Techniques to Promote Oxidation Resistance in Polyethylene Battery Separators

Sunho Choi

Microporous LLC, Piney Flats, Tennessee 37686 USA

Product Summary

Automotive				<u>Separators</u>	
Applications	Battery Type	Legacy Products	New Products	Future Products	Legacy Products
SLI	SFB	DuroForce [®] Ultra™	CellForce [®] ULR™		CellForce®ULR™
	FER		CellForce [®] ULR™		GlassEorco™
				DuroForce® OE	Glassroice
Start/Stop	2. 2			DCA™ Booster Mat	DuroForce [®] OE
				MaxiWik™	CellForce [®] XAS™
	AGM		GlassForce™		
		Motive Pow	er		<u>Laminates</u>
Applications	Battery Type	Legacy Products	New Products	Future Products	DCA [™] Booster Mat
	SFB	Duro Force 8 CLTM		CellForce® XAS	MaxiWik™
Forklifts		DuroForce [®] CL		DCA™ Booster Mat	
	AGM		GlassForce™		Pasting Papers
	SFB	Flex-Sil®		CellForce® XAS	GlassForce™
LSEV		CellForce®			
	AGM		GlassForce™		
		Stationary	1		
Apllications	Battery type	Legacy Products	New Products	Future Products	
		Ace-Sil®			
Talacam /UDS	SFB	DuroForce [®] CL™			
releconity OPS		CellForce®			
	AGM		GlassForce™		
ESS	AGM		GlassForce™		

Technology Roadmap (2020-2025)

CellForce[®] ULR

Ultra Low Resistance Separator for Fast Charging in EFB, Golf Carts and Forklifts

30% Reduction in ER compared to Std PE separator

High Oxidation Stability through novel formula

MICROPOROUS

Challenge Identification

Goal: Develop the new separators with enhanced oxidation resistance

- = Challenge: How can we reduce the chemical interaction of polymers?
- \rightarrow How can we prevent the PE side groups from probable chemical interaction?

Probable Strategies

Technological Concept	Feasible Options	Pros	Cons
Reduce the number of side H groups	PE crosslinking (e.g., via catalysts or beam radiation)	 may offer better oxidation resistance 	 possibility to change PE's mechanical properties require additional post-production processes not very cost-effective
Reduce the number of free radicals	Addition of radical trapping additives	 may not need additional post-production process 	 need investigation of property changes the additive functionality would be offset by other additives (e.g., wetting agent, etc.)
Making PE composites	Mixing of other polymers such as rubber	 may not need additional post-production process proven data showing enhanced oxidation (e.g., with latex/rubber) 	 max. achievable oxidation resistance would be lower than other options

Priority Determination

Decision factor: Time and Cost

Hypotheses: Effect of Aniline point to the oxidation resistance

- Aniline point (AP)
 - Definition: the lowest temperature at which an equal volume of aniline (C₆H₇N) is completely miscible with the tested sample
 - More aromatic compounds in the oil \rightarrow more miscible with aniline \rightarrow lower AP
 - or, High AP \rightarrow higher alkane contents \rightarrow lower amounts of aromatic and naphthenes
 - In technical oil, the aniline point is used to measure refinement levels
 - higher aniline point \rightarrow higher level of refinement \rightarrow higher oil stability
 - Aromatic content could directly affect oxidation if it's too high
 - \rightarrow Oils with less aromatic content would be better for less oxidation
 - \rightarrow Oils with higher AP would be better for better oxidation resistance

	А	В	С
Aniline point	87	85-93	94

• Assumption: Oil C would show better oxidation resistance

Sample Configuration

	Α	В	С
Aniline point	87	85-93	94
Residual oil content (wt%)	17	17	18
Silica content (wt%)	28.6	28.6	28.6
Rubber content (wt%)	0.7	0.7	0.7
Backweb (in.)	0.011	0.010	0.010
Hg porosity (%)	64.2	62.8	63.2

Results: Elongation

- MD Elongation: did not show significant differences
- CD Elongation of Sample C: 20% \uparrow (vs. B), 30% \uparrow (vs. A)

Results: ER

Results: Perox 40 Test

Results: Kill Test

- A and B do not show significant difference (less than 1%)
- Kill test of C: 8.9% ↑ (vs. A), 8.3% ↑ (vs. A)

Results: Summary

С	vs. A	vs. B
MD Elongation	-	-
CD Enlogation	30% 个	20% 个
ER	5% ↓	15% 个
Kill test	8.9% 个	8.3% 个
Perox 40 test	7.8% 个	3% ↓

• High AP oil \rightarrow Higher oxidation resistance especially at high temp conditions

Hypotheses

- Patents by WR Grace and others
 - suggests that addition of latex/synthetic rubbers in PE can enhance oxidation stability
 - \rightarrow No clear mechanism or scientific explanation were provided

Sample Configuration

С	Α	В	С	D
Rubber content(wt%)	0	0.7	1.4	2.7
Silica content (wt%)	28.6	28.6	28.6	28.6
Residual oil content (wt%)	16	17	17	17
Backweb (in.)	0.010	0.011	0.010	0.010
Hg porosity (%)	63.9	64.2	63.0	61.9

Effect of Rubber Amount

Results: Elongation

- MD Elongation: did not show significant differences
- CD Elongation < Rubber Amount

Results: ER and Kill Test

Hypothesis: Cross-linked rubber component?

SEM Micrograph 1.

20kX Micrograph of a typical PE separator (Microporous LLC)

SEM Micrograph 2

20kX Micrograph of a separator containing cross-linked rubber component PE-Rubber Hybrid Separator (Microporous LLC)

Conclusion

- Microporous has been one of the most innovative battery separator companies
- Microporous has an extensive product lineup based on customer's needs, including the separators for automotive, motive power, and stationary
- Microporous recently launched a new product, CellForce[®] ULR, which shows
 - 30% reduction in ER compared to the standard PE separator
 - high oxidation stability through novel formula and processing
- CellForce [®] ULR is an outcome of Microporous' continuous R&D effort through:
 - fundamental understanding of separator's structure-property-relationship
 - composite microstructures engineered to fine-tune the separator properties
- Microporous' research shows that the properties of oils and rubbers affect the separators' oxidation resistance significantly

MICROPOROUS